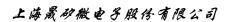
单节锂电池保护芯片

2017/05/26


上海晟矽微电子股份有限公司

Shanghai SinoMCU Microelectronics Co., Ltd.

目录

1	产品简	5介	3
	1.1	产品特性	3
	1.2	系统框图	4
	1.3	封装引脚信息	4
	1.4	产品目录	5
2	功能详	∮述	6
	2. 1	正常工作状态	6
	2.2	过充电保护	6
	2.3	过放电保护及休眠状态。	6
	2.4	过流保护	
	2.5	过充电后的负载检测	7
	2.6	过放电后充电器的检测	7
	2.7	向 OV 电池充电功能 (允许)	7
	2.8	外部控制 MOSFET 的选择	
	2.9	时序图	
3	电路朱	导性参数	1
	3. 1	极限特性参数 1	1
	3. 2	直流特性参数 1	1
4	典型应	☑用	2
5	特性曲	h线	3
6	封装尺	⁷ 寸	6
7		· 已录	

1 产品简介

MC9044 是为单节锂离子电池供电系统(例如手机电池包)而设计的专用芯片,用来防止锂离子电池因为过充电、过放电和(或)过流造成损坏或寿命减少。超小型的封装和较少的外部元件需求,使 MC9044 可以完美的集成到有限的电池包空间中去。精确的过充电保护电压确保了安全并充足的充电。低功耗设计使芯片在电池工作及储存期间静态功耗极低。

1.1 产品特性

(1) 高精度电压检测电路

● 过充电检测电压 4.30V 精度±50mV ● 过充电释放电压 4.10V 精度±50mV ● 过放电检测电压 2.40V 精度±100mV ● 过放电释放电压 3.00V 精度±100mV ● 放电过流检测电压 150mV 精度±30mV ● 负载短路检测电压 0.8V 精度±300mV

(2) 各延迟时间由内部电路设置(不需要外接电容)

● 过充电检测延迟时间 典型值 70ms

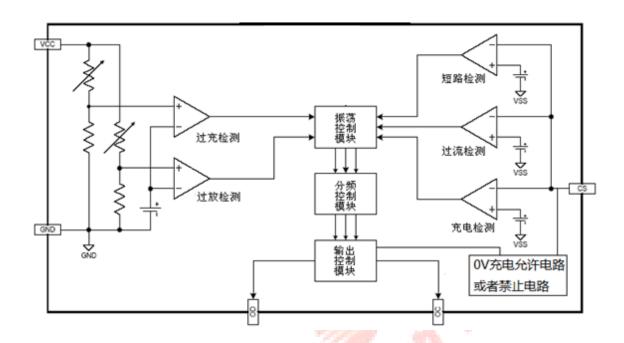
● 过放电检测延迟时间 典型值 35ms

● 放电过流电检测延迟时间 典型值 6ms

● 负载短路检测延迟时间 典型值 350us

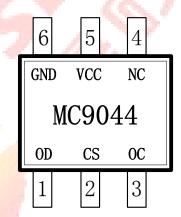
(3) 过放电恢复功能

(4) 低功耗电流


● 工作模式 典型值 3. OuA,最大值 6. O uA (VCC=3. 9V)

● 过放自恢复模式 典型值 2. 0uA (VCC=2. 0V)

- (5) 向 0V 电池充电功能
- (6) 工作温<mark>度范围: -40</mark>℃[~]+85℃
- (7) 小型封装: SOT23-6



1.2 系统框图

1.3 封装引脚信息

●S0T23-6 封装引脚排列

●S0T23-6 封装引脚说明

编号	引脚名	方向	功能描述
1	OD	0	连接 MOSFET 的栅端,用于过放电保护的控制
2	CS	Ι	电流检测及充电器检测
3	OC	0	连接 MOSFET 的栅端,用于过充电保护的控制
4	NC	_	-
5	VCC	-	电源
6	GND	_	地

1.4 产品目录

参数	过充电	过充电	过放电	过放电	过流保护	向 0V 电池	其它功能
	检测电压	释放电压	检测电压	释放电压	电压	充电功能	
型号	VOCP	VOCR	VODP	VODR	VOI1	VOV	_
MC9044	4. 30V	4. 10V	2. 40V	3. 00V	150mV	允许	有过放自恢复功能

2 功能详述

2.1 正常工作状态

此 IC 持续侦测连接在 VCC 和 GND 之间的电池电压,以及 CS 与 GND 之间的电压差,来控制充电和放电。当电池电压在过放电检测电压(VODP)以上并在过充电检测电压(VOCP)以下,且 CS 端子电压在充电器检测电压(VCH)以上并在放电过流检测电压(VOI1)以下时,IC 的 OC 和 OD 端子都输出高电平,使充电控制用 MOSFET 和放电控制用 MOSFET 同时导通,这个状态称为正常工作状态。此状态下,充电和放电都可以自由进行。

注意:初次连接电芯时,会有不能放电的可能性,此时短接 CS 端子和 GND 端子,或者连接充电器,就能恢复到正常工作状态。

2.2 过充电保护

当电池电压高于过充电保护电压(VOCP)并超过过充电延时时间(TOC)周期,充电动作将通过关断充电控制 MOSFET 被禁止。过充电延时时间默认为 70ms。过充电保护将在以下两种情况下解除:

- (1) 电池通过自放电, 电压下降到低于过充电释放电压(VOCR)。
- (2) 电池电压下降到低于过充电保护电压(VOCP) 且连接了一个负载。

当电池电压高于 VOCP, 即便在一个负载被连接的情况下, 过充保护也不会释放。

2.3 过放电保护及休眠状态。

有过放自恢复功能的型号

正常工作状态下的电池,在放<mark>电过程中</mark>,当电池电压降低到过放电检测电压(VODP)以下,并且这种状态持续的时候超过放电检测延迟时间(TOD)以上时,MC9044 系列 IC 会关闭放电控制用的 MOSFET(OD 端子),停止放电,这个状态称为过放电状态。

过放电状态的释放,有以下三种方法:

- (1) 连接充电器,若 CS 端电压低于充电器检测电压(VCH),当电池电压高于过放电检测电压(VODP) 时,过放电状态释放,恢复到正常工作状态。
- (2) 连接充电器,若 CS 端电压高于充电器检测电压(VCH),当电池电压高于过放电释放电压(VODR)时,过放电状态释放,恢复到正常工作状态。
- (3) 没有连接充电器时,如果电池电压自恢复到高于过放电释放电压(VODR)时,过放电状态释放,恢复到正常工作状态,即有过放自恢复功能。

2.4 过流保护

在普通模式下,MC9044 通过检测 CS 脚的电压连续监测放电电流。如果 CS 脚的电压高于过流保护电压并超过过流延时周期,过流保护电路启动且放电动作将通过关断放电控制 MOSFET 被禁止。当负载卸掉且BATT+和BATT-出现高阻,过流保护解除并且将恢复到普通模式。

MC9044 根据不同的过流检测级别提供两种过流保护等级 $(0.150V \pm 0.80V)$ 和两种过流延时 $(T0I1 \pm T0I2)$ 。

SIN\$mcu 最矽微电子

MC9044 用户手册 V1.1

2.5 过充电后的负载检测

过充电后的负载检测靠检测 CS 脚的电压来实现。当过充电后一个负载连接到电池包,放电电流流过 MOSFET 的寄生二极管在 CS 和 GND 之间形成一个二极管电压降。如果 CS 脚电压高于负载检测临界电压 (VLD),负载就被检测到。

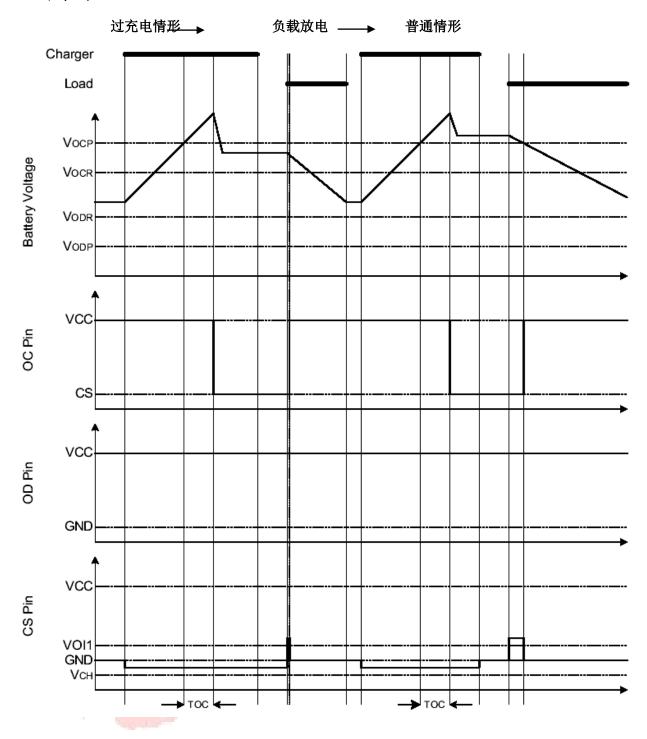
2.6 过放电后充电器的检测

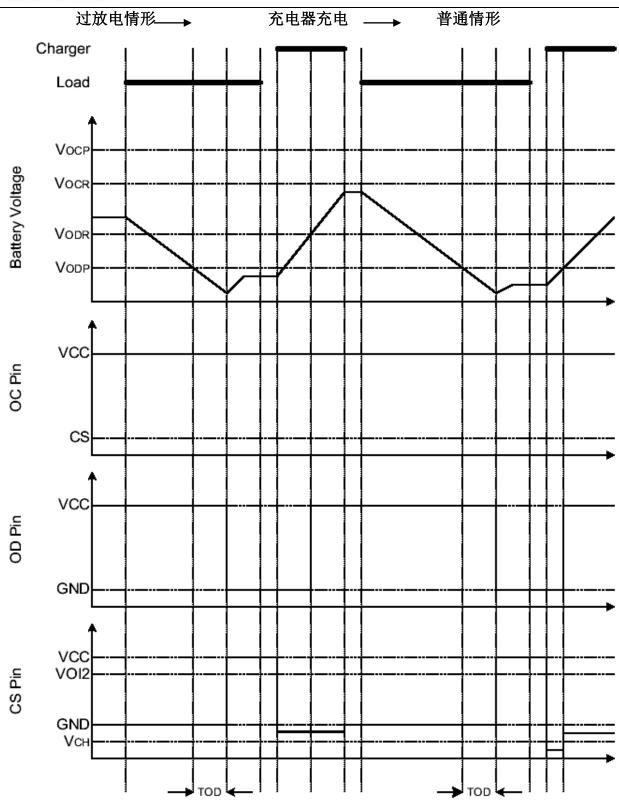
当过放电发生时,放电控制 MOS 管关闭从而放电过程被禁止。但是,通过 MOSFET 的寄生二极管的充电过程是允许的。一旦充电器与电池包连接,MC9044 立即打开所有的时序和监测电路。如果 CS 和 GND 之间的电压低于充电器检测临界电压 (VCH),充电过程就被检测到。

2.7 向 OV 电池充电功能 (允许)

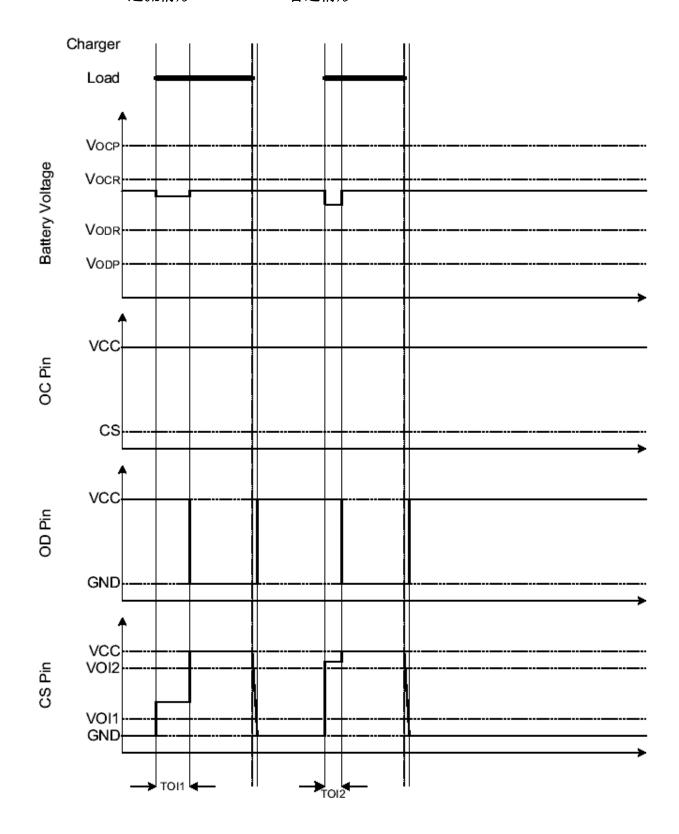
此功能用于对已经自放电到 0V 的电池进行再充电。当连<mark>接在电池正极(BATT+)</mark>和电池负极(BATT-)之间的充电器电压高于"向 0V 电池充电的充电器起始电压(V0V)"时,充电<mark>控制用 MOSFET</mark> 的门极固定为 VCC 端子的电压,由于充电器电压使 MOSFET 的门极和源极之间的电压差高于其导通电压,充电控制用 MOSFET 导致(0C 端),开始充电。这时放电控制用 MOSFET 仍然是关断的,充电电流通过其内部寄生二极管流过。当电池电压高于过放电检测电压(VODP)时,MC9044 系列 IC 进入正常工作状态。

注意:


- (1) 某些完全自放电后的电池,不允许被再次充电,这是由锂电池的特性决定的。请询问电池供应商,确认所购买的电池是否具备"允许向 0V 电池充电"的功能,还是"禁止向 0V 电池充电"的功能。
- (2) "允许向 0V 电池充电<mark>功能"比</mark> "充电过流<mark>检测功能"优先级更高。因此使用"允许向 0V 电池充电"功能的 IC,在电池电压较低的时候会强制充电。电池电压低于过放电检测电压(VODP)以下时,不能进行充电过流状态的检测。</mark>


2.8 外部控制 MOSFET 的选择

因为过流保护电压是预先设定的,过流检测的临界电流值决定于放电控制 MOSFET 的导通电阻。外部控制 MOSFET 的导通电阻可以用等式计算:


RON=VOIX/(2*I_T)(I_T 是过流临界电流)。例如,如果过流临界电流 I_T 被设计为 3A,外部控制 MOSFET 的导通电阻是就必须是 $25m\Omega$ 。用户应该注意 MOSFET 的导通电阻会随着温度变化而变化。它也随着栅源电压变化而变化(MOSFET 的导通电阻随着栅源电压下降而上升)。一旦 MOSFET 的导通电阻变化,过流临界电流将相应变化。

2.9 时序图

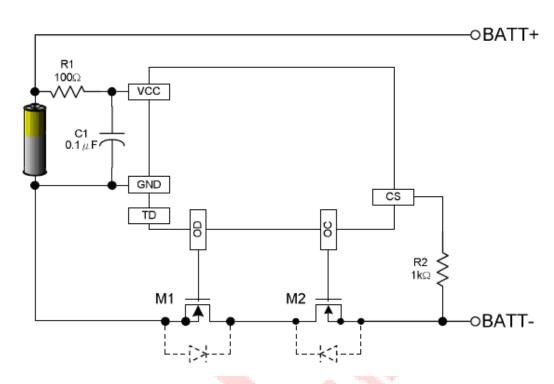
过流情形 —— 普通情形

3 电路特性参数

(所有测试均在25℃,除非特殊说明)

3.1 极限特性参数

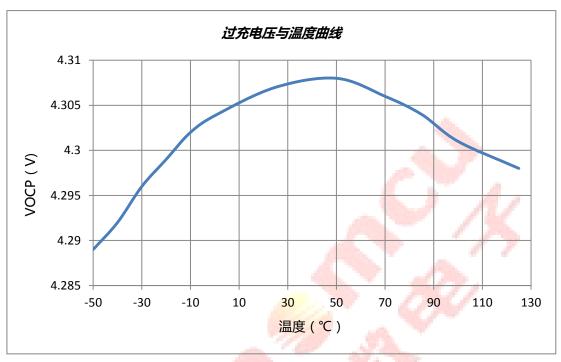
参数	符号	范围	单位
VCC 与 GND 输入电压	VCC	GND-0.3~GND+10	V
OC 输出引脚电压	VOC	VCC-14~VCC+0. 3	V
OD 输出引脚电压	VOD	GND-0.3~VCC+0.3	V
CS 输出引脚电压	VCS	VCC-14~VCC+0. 3	V
工作温度范围	TOP	-40 [~] +85	$^{ ext{ }}$ $^{ ext{ }}$
储存温度范围	TST	-40~+125	$^{\circ}$

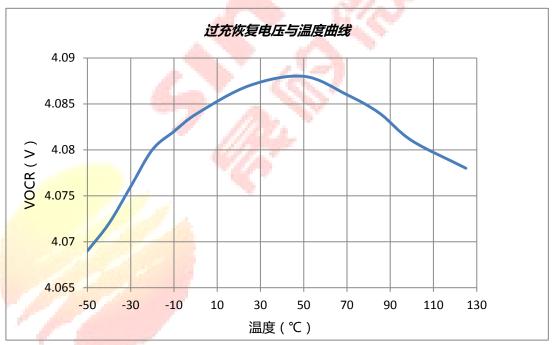

注: 该芯片只能应用 5V 充电器领域

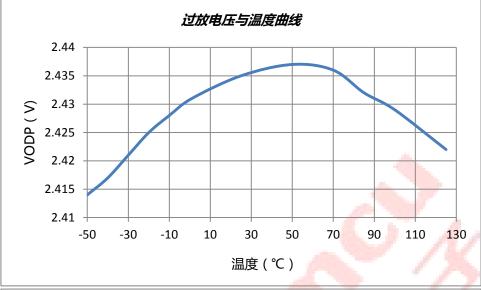
3.2 直流特性参数

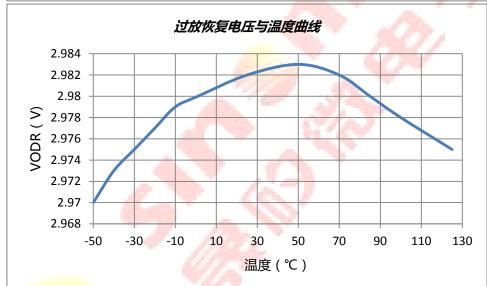
参数	测试条件	符号	最小值	典型值	最大值	单位
工作电压	VCC	VCC	2	3.6	5	V
工作电流	VCC=3. 9V	ICC	1.8	3. 0	6. 0	uA
过放自恢复电流	VCC=2. 0V	IOD	11/60	2. 0	3.0	uА
过充保护电压		VOCP	4. 25	4. 30	4. 35	V
过充释放电压		VOCR	4. 05	4. 10	4. 15	V
过放保护电压		VODP	2. 30	2. 40	2.50	V
过放释放电压	and a	VODR	2. 90	3.00	3. 10	V
过流保护电压	4 //2	VOI1	120	150	180	mV
短路保护电压	VCC=3. 6V	V0I2	0.50	0.80	1. 10	V
过充延迟时间	- C	TOC		70	200	ms
过放延迟时间	VCC=3. 6V to 2. 0V	TOD		35	100	ms
过流延迟时 <mark>间</mark>	VCC=3. 6V	TOI1		6	20	ms
短路延迟 <mark>时间</mark>	VCC=3. 6V	T0I2		350	700	us
负载检测 <mark>电压</mark>	11	VLD	0. 12	0.15	0.18	V
充电器检测电压	4	VCH	-1.2	-0. 7	-0.2	V
OD 引脚输出高电平		VODH	VCC-0. 1	VCC-0.02		V
OD 引脚输出低电平		VODL		0. 1	0. 5	V
OC 引脚输出高电平		VOCH	VCC-0. 1	VCC-0.02		V
OC 引脚输出低电平		VOCL		0. 1	0. 5	V
CS-VCC 间内部电阻	VCC=1. 8V, VCS=0V	RCSU	100	200	600	KΩ
CS-GND 间内部电阻	VCC=3. 5V, VCS=1. 0V	RCSD	50	100	200	KΩ
CS-OC 间内部电阻		RCSOC	2	4	8	MΩ
充电器起始电压 (允许向 0V 电池充电)	允许向 0V 电池充功能	VOV	1.2	_	_	V

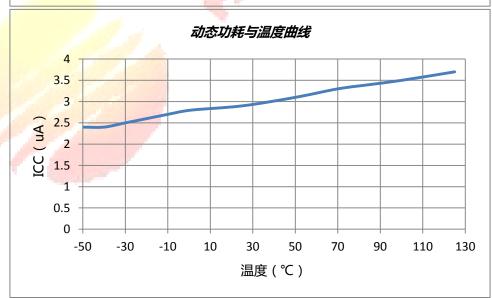
4 典型应用

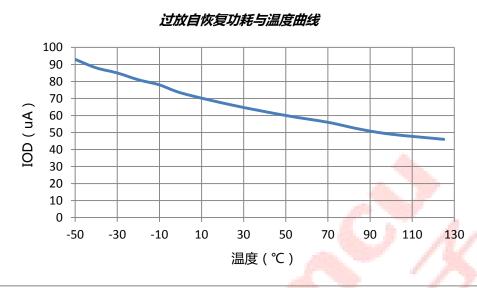

单节锂离子电池保护电路图

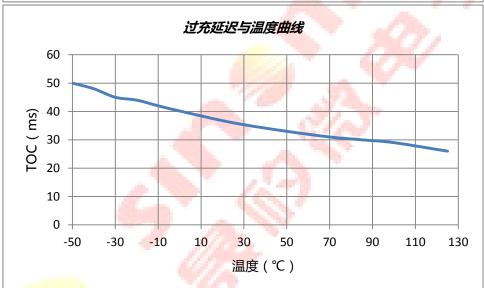

		1 1 (21) 4 (3) (3)	J-H-			-
标记	名称	用途	最小值	典型值	最大值	备注
R1	电阻	限流、稳定 VCC、加强 ESD	100 Ω	100 Ω	200 Ω	(1)
R2	电阻	限流	1ΚΩ	1Κ Ω	1Κ Ω	(2)
C1	电容	滤波、稳定 VCC	0.01uF	0. 1uF	1. 0uF	(3)
M1	N-MOSFET	放电控制	-	-	-	(4)
M2	N-MOSFET	充电控制	-	-	-	(5)

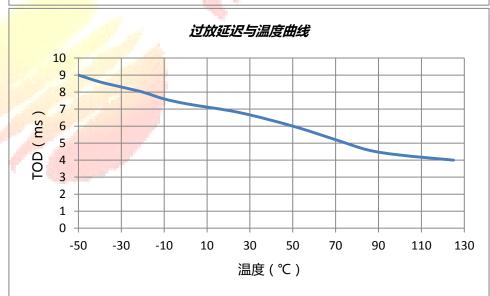

- (1)、R1 连接过大电阻,由于耗电流会在R1上产生压降,影响检测电压精度。当充电器反接时,电流从充电器流向IC,若R1过大可能导致VCC-GND端子间电压超过绝对最大额定值的情况发生。在不需要电池反接保护功能的应用中,该电阻可省略。
 - (2)、R2 连接过大电阻,当连接 5V 充电器时,有可能导致不能切断充电电流的情况发生。 在不需要充电器反接保护功能的应用中,该电阻可省略。
- (3)、C1 有稳定 VCC 电压的作用,请不要连接 0.01uF 以下的电容。在不需要电池反接保护功能的应用中,该电阻可省略。
 - (4)、使用 MOSFET 的阈值电压在过放电检测电压以上时,可能导致在过放电保护之前停止放电。
 - (5)、门极和源极之间耐压在充电器电压以下时,N-MOSFET 有可能被损坏。

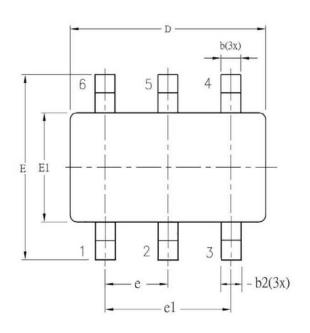


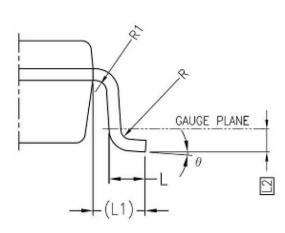

5 特性曲线

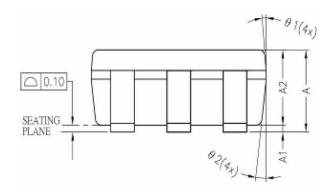


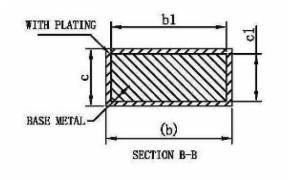









6 封装尺寸


●封装类型: SOT-23-6 温度范围: -40℃ ~ +85℃

SYM	ALL DIMENSIONS IN MILLIMETERS					
BOL	MINIMUM	NOMINAL	MAXIMUM			
Α	-	1.30	1.40			
A1	0	-	0.15			
A2	0.90	1.20	1.30			
b	0.30	-	0.50			
b1	0.30	0.40	0.45			
b2	0.30	0.40	0.50			
С	0.08	0.22				
c1	0.08	0.20				
D	2.90 BSC					
E	2.80 BSC					
E1	1.60 BSC					
е		0.95 BSC				
e1		1.90 BSC				
L	0.30	0.45	0.60			
L1	0.60 REF					
L2	0.25 BSC					
R	0.10					
R1	0.10	-	0.25			
θ	0°	4°	8°			
θ1	5°	-	15°			
θ2	5° - 15°					

7 修订记录

版本	日期	编制	新建或修改描述
V0. 1	2016-08-08		新建
V0. 2	2017-05-26		增加对 5V 充电器的描述

